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TEMPORARY SATELLITE CAPTURE OF SHORT- 
PERIOD JUPITER  FAMILY  COMETS  FROM THE 

PERSPECTIVE OF DYNAMICAL SYSTEMS 
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The Temporary Satellite  Capture (TSC) of short-period comets, such as Oterma 
and Helin-Roman-Crockett, by Jupiter has intrigued  astronomers for  many 
years. A widely  accepted approach to study TSC is to numerically integrate  the 
equations of motion  for the n-body  problem using a wide range of initial 
conditions obtained from the  heliocentric two-body problem; then,  a search 
ensues for instances when the Joviocentric energy becomes negative. More 
recently, a  preliminary  analysis involving the application of Dynamical Systems , 

Theory (DST) to the  Sun-Jupiter-comet three-body problem has provided 
significant  insight  into  the motion in the  Sun-Jupiter system and offered a  simple 
model  to account for the  TSC phenomena observed in Jupiter  family  short- 
period comets. The accuracy of this model  can  be immediately verified since 
ephemeris  data is available for  comet  trajectories. 

INTRODUCTION 

In July 1943. L.E. Cunningham and R.N. Thomas’ published data that  revealed, among other  things, 
that  the recently discovered comet 39P/Oterma had  passed close to  Jupiter in 1938. Astronomers 
subsequently noted that  the orbit of the comet was  “not particularly  stable”  due to close apbroaches of 
Jupiter.  It  is a  generally accepted practice in astronomy to explain the erratic behavior of short-period 
comets such as Oterma in the  context of a heliocentric mo-body problem where perturbations from the 
outer planets result in significant  changes to the orbital parameters of a given comet. However, evaluating 
this issue  from  the perspective of Dynamical  Systems Theory (DST) has offered new insight  into  the  erratic 
dynamical behavior  of this and other comets. 

’ Professor,  School of Aeronautics and Astronautics, Purdue University,  West  Lafayette,  IN, 47907 
* Graduate  Student, School of Aeronautics and Astronautics, Purdue University, West  Lafayette, IN 47907 

Member of Technical Staff, Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 

1 



Comets like 39P/Oterma (OTR) and 1 1  lP/Helin-Roman-Crtxkett (HRC) are classified as Jupiter 
family short-period comets. These comets share at least one significant orbital characteristic: at some time 
during their dynamical evolution  each experiences a low-velocity close encounter with Jupiter such  that the 
Joviocentric energy becomes negative. This event is denoted as Temporary Satellite Capture  (TSC). 
Kazimirchak-Polonskaya’ studied TSC in the early 1970’s by numerically integrating the orbits of a group 
of minor  bodies,  with a wide range of heliocentric orbital elements as initial conditions. She used  an  n-body 
integrator to propagate the initial conditions and searched for instances when the bodies crossed the sphere 
of influence of Jupiter, Saturn, Uranus, or Neptune. This effort was an attempt to create the dynamical 
circumstances required for a TSC to  occur and thus establish a criterion for capture. C a r u ~ i , ~ - ’ ~  in 
collaboration with P o z z ~ , ~  Valsecchi,“” Kre~Bk,’.~ and Per~zz i*-~  employed a similar approach to study the 
capture phenomena. 

Investigations of this problem have subsequently continued. In the mid-1970’s. Horedt,” 
Heppenheimer,’2-13 and Porco13 considered the problem  of TSC in the context of the planar circular 
restricted three-body problem  (CR3BP). These authors attributed the strange behavior of some Jupiter 
family comets to the separatrices associated with the libration point LI in the Sun-Jupiter system. Though 
not explicitly stated, this may be the first study linking the behavior of short-period Jupiter family comets 
to the dynamical structure associated  with the collinear libration points  in the Sun-Jupiter system. In a more 
recent effort, Lo and RossI4 suggested that the chaotic nature of the dynamics of Jupiter family short-period 
comets can be explained in the context of the stable and unstable manifolds associated with the collinear 
libration points LI and L2 in the Sun-Jupiter three-body system. This approach successfully reveals many of 
the significant features of the motion of these comets.  It  is also noted,  however, that certain comet behavior 
is  even more completely reflected  in the evolution of stable and unstable manifolds corresponding to the 
periodic orbits in the vicinity of L1 and L. Koon, Lo, Marsden, and RosslS considered this issue in the 
context of the planar restricted three-body problem and presented some theoretical results as well. But, to 
allow for a more thorough investigation of the critical features in the context of periodic orbits and quasi- 
periodic trajectories in the three-dimensional, three-body problem  (3BP). the complexities involved with 
the out-of-plane component of the motion are required; such analysis is the focus of the current effort. 

I 

In this investigation, the motion of OTR and HRC are considered within the framework of the three- 
dimensional, restricted three-body problem. This formulation allows for consideration of the impact of the 
stable and unstable manifolds, associated with  both halo orbits and Lissajous trajectories, on the evolution 
of the comet trajectories. In particular, the problem  is  posed as a search for trajectory arcs along the stable 
andlor unstable manifolds that  reflect the comet orbit. Initially, the comet trajectories are viewed in the 
context of the circular (but three-dimensional) restricted problem. The inherent symmetries of this model 
simplify the task  of locating a trajectory arc that closely matches a segment along the path of  OTR and 
HRC, particularly during TSC. Such a trajectory arc is defined as a “match.” Once a match is identified, 
the solution is transferred to the ephemeris model. In this model, actual ephemeris data for the motion  of 
the primary bodies  is  used during the numerical integration of the relative equations of motion. The purpose 
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of this last step is  to  improve the accuracy of the match. Of course, the final arc that is computed is 
evaluated against the actual comet  path  that  is also available from ephemeris information. 

BACKGROUND 

Circular-Restricted  Three-Body  Problem 

In the simplified Sun-Jupiter-comet system, i t  is  assumed that the mass of the comet is both constant 
and negligible, relative to the two larger primaries. It is also initially assumed that thi: motion of the 
primaries about the barycenter of the system  is circular. Typically, the motion of comets is considered from 
an inertial, heliocentric perspective. However, the more significant features of TSC are best  viewed from 
the perspective of the Sun-Jupiter rotating frame. Let the Sun-Jupiter rotating frame be defined such that 
the x-axis is directed from the Sun towards Jupiter. Then, the z-axis is normal to the invariant plane of 
motion of the primaries, in the direction of orbital angular momentum, and  the y-axis completes the right- 
handed triad. 

By modeling the comet as an infinitesimal particle in a three-body system, the initial search for a 
match  is confined to the three-dimensional solution space of the CR3BP. Thus,  any potential motion of a 
comet  in this regime is based  on an understanding of this available solution space. Of course, with no 
general solution for motion in the restricted three-body problem, any analysis of the behavior begins with a 
consideration of particular solutions. For this investigation, such solutions include the five equilibrium, or 
libration, points L i  as well as fundamental motions in the vicinity of the collinear libration points L i  
( i  = 1,2,3), such as periodic orbits. Viewed in the Sun-Jupiter rotating frame, it is clear that the paths of 
OTR and HRC are neither periodic nor stationary. On the contrary, their evolution appears chaotic in 
nature. However, equilibrium and periodic solutions provide the structure necessary to identify and 
numerically produce ‘:trajectory arcs in the CR3BP that resemble the observed paths of these comets. 
specifically by examining the flow  toward and away  from  such solutions. Naturally, there are an infinite 
number of periodic solutions that satisfy the equations of motion of this system. Families of halo orbits in 
the vicinity of the collinear libration points are selected here as the basic framework for this analysis. 
Experience with  such‘ periodic orbits, as well as the associated stable and unstable manifolds, suggests 
behavior that is similar in nature to that observed in the motion of the comets. For notational purposes, let 
SJLl denote the Sun-Jupiter L, halo family, and SJL2 denote the Sun-Jupiter LZ halo family. These 
continuous, three-dimensional families are represented in Figure 1 in terms of xz-plane projections of a 
limited number of periodic trajectories that are members of these families. 

Dynamical  Systems  Approach 

The geometrical theory of dynamical systems  (from  PoincarC) is  based  on the phase portrait of a 
dynamical system as discussed in various mathematical  source^.'^-^^ Periodic solutions and equilibrium 
points are two examples of the fundamental models available for the phase space, that is, invariant 
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manifolds. Equilibrium points and periodic orbits exist specifically i n  the center manifold, a significant 
subspace of the phase space. However, i t  is possible  to exploit the hyperbolic nature of these types of 
solutions in the restricted problem, by using other invariant manifolds, that is, the associated stable and 
unstable manifolds, to generate general trajectory arcs in this region of space. The stable and  unstable 
manifolds asymptotically approach and depart these fundamental solutions. The first concern, then, is the 
computation of the stable and unstable manifolds associated with particular equilibrium points or periodic 
halo orbits. 

As mentioned, for this investigation, periodic halo orbits are used as the reference solution for 
investigating the phase space. A nonlinear system  and  its  flow give rise to a nonlinear map. Then, along a 

periodic orbit of the flow,  any state can be defined as a fixed point  for the map. Suppose that X=?, is a 
fixed point of the map X(t,+,) = F(x( t , ) )  where overbars indicate vector quantities. To investigate the 
behavior near the periodic solution X ( t k + i )  = F'(X(t , ) )  = X & ) ,  of period T, and the fixed point based at 
X = & ,  introduce a disturbance such that X = X, + and, then, a discrete-time representation of the linear 
system, Y ( f n + l )  = Q ( r k + l , r k )  j i ( t k ) ,  allows for an assessment of the stability of the periodic solution. The 
procedure is based  on the availability of the monodromy matrix associated  with a particular halo orbit. As 
with any discrete mapping of a fixed point, the characteristics of the local geometry of the phase space can 
be determined from the eigenvalues and eigenvectors of the monodromy matrix (that is, the  state transition 
matrix (STM), Q(T+to,to) , after one period ( r )  of the motion). They are characteristic of the fixed point 
as well as the halo orbit itself. Once the stable, unstable, and center eigenspaces are identified that 
correspond to one state on the periodic solution, the eigenvector directions associated with other states 
along the periodic orbit can be determined by mapping these vectors using the  STM.  That is, if P" is the 
six-dimensional unit stable eigenvector direction associated  with the fixed point ?(to) = ?(to + T )  = Xe on 
the periodic solution after one period of the motion ( r ) .  then 8 " s  ( r , )  = @ ( r ,  ,ta)8",/l(@(r,,ra)P", 11 is the unit 
stable direction associated with the state X(ti) .  

The stable ( E ), unstable ( E' ) and center ( E ) eigenspaces associated with span the linear phase 
space. These three fundamental subspaces are themselves invariant sets. The three fundamental eigenspaces 
intersect at Xe and are tangent to the local stable ( W I L ) ,  unstable ( Wl%) and center ( Wf:c) manifolds 
corresponding to the nonlinear map. Furthermore, since Wfic and Wf:c are tangent to E *  and E" at X, , 
respectively, the asymptotic nature of the solutions is  preserved in the vicinity of Xe for the map. Thus, the 
local approximation of the stable (unstable) manifold  involves calculating the eigenvector associated  with 
the stable (unstable) eigenvalue that corresponds to the fixed point Z r .  Hence, the global stable and 
unstable manifolds can be approximated numerically by propagating initial conditions that lie on W,& and 
q:. For instance, near ne , W s  is determined to first order, by fw* . Remove the fixed point X, from the 
stable manifold  to form two half-manifolds W'+ and W'- . Consider a state 7, on W" . Integrating 
forward and backward in time from ZS produces W . Thus, there exists some arbitrarily small constant d 
such that X$ = X, + d .  fW, lies on the local stable manifold, W,Ac. Higher order expressions for are 
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available but  not necessary. Thus, by numerically propagating the nonlinear vector  field  with initial 
state F$ , the global stable manifold, W ’ , associated with Zc , can be computed. 

In configuration space, the  collection of all  the stable and unstable manifold trajectories associated 
with numerous states along the periodic orbit forms,  locally, a three-dimensional surface. This can be 

further expanded to consider a large subset of a family of orbits, such as SJLl and SJL2. In such a case, the 
collection of all stable and unstable manifolds - represented in terms of a large collection of numerically 
determined trajectories - that asymptotically approach and depart this subset of the family forms a volume 
in configuration space. The search for a match  to  reflect a particular comet trajectory in this regime 
involves the search for a trajectory arc, from among this large volume  of numerical trajectories (associated 
with the SJLl and SJL2 halo families). This arc must resemble the path  of the comet particularly in ?he 
vicinity of Jupiter while the comet is captured. Clearly, this type of search is a nontrivial task. Nevertheless, 
the symmetry properties inherent in this problem are very  useful  in simplifymg the search process  for a 
match (that is, narrow the solution space of interest). 

Symmetry of Solutions  in  the CR3BP 

The form of the mathematical model  for the CR3BP lends itself to various types of symmetries. The 
more  obvious one is, of course, the xy-plane symmetry. That is, if [ x  y z i y i]’ satisfies the equations 
of motion  (EOMs) then so does [ x  y -z x y -21‘. This property leads to the existence of northern and 
southern families of periodic halo orbits. A northern halo family is characterized by a maximum out-of- 
plane excursion (A, amplitude) that lies above the xy-plane ( +z ). A southern halo family has a maximum 
out-of-plane excursion below the xy-plane ( - z ) .  The term “out-of-plane” denotes the plane of motion of 
the primaries. The two halo families illustrated in Figure 1 are both northern families of solutions. This 
northern/southern symmetry of solutions is defined here as symmetry property 1 (SP1). The structure of the 
EOMs also lends itself to time-invariance. That is, if the independent variable, time ( t ) ,  is transformed to 
r = -t it is clear that, if [ x  y z i y i]’ satisfies the EOM’s for At > O  , then [ x  -y z -i y -iIT 
also satisfies the EOM’s for At < 0 .  The symmetry due to time invariance is defined here as symmetry 
property 2 (SP2). These two symmetries, SP1 and SP2, simplify the task  of characterizing the solution 
space. This task  is further simplified by identifymg the surfaces of zero-velocity and, thus, regions that are 
excluded for  motion  in the CR3BP. 

Zero-Velocity  Surfaces  and  Regions of Exclusion 

In the CR3BP.  propagation of a set of initial conditions will result in a path  that  is  bounded by the 
zero-velocity surfaces, as discussed by S~ebehely.’~ For a given  value  of the pseudo-energy, i t  is well- 
known that these zero-velocity surfaces bound  the regions that represent the available solution space and 
thus, by default. also indicate regions that are excluded as the path of the third body (comet or particle) 
evolves. The Sun-Jupiter L, and halo families, that  is,  those  depicted in Figure 1, correspond to a 
specific range of values of the Jacobi Constant. The associated zero-velocity surfaces then apportion the 
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configuration space into three regions of motion: the inner region, the outer region, and the temporary 
satellite capture (TSC) region. A comet  moving within the  inner  region is in an orbit contained within the 
heliocentric orbit of Jupiter. A comet moving in the  outer  region is i n  an orbit that extends beyond the 
heliocentric orbit of Jupiter. A comet that shifts into the TSC  region is temporarily captured by Jupiter and, 
thus, remains in the vicinity of the planet until it escapes and crosses into either the inner or outer region. 
To better visualize these three regions, consider the  zero-velocity surface associated with a Jacobi Constant 
that  possesses a value of 3.0058 as illustrated in Figure 2. Note  that  the inner region reflects motion within 

the center spheroid; the outer region  is defined as that space beyond  the  "pinched" cylindrical structure that 
surrounds the system; and, the TSC region is  seen as the relatively small opening that connects the 
available regions of motion. A particle on or near the Sun-Jupiter line (x-axis), in  the vicinity of the 
opening of the zero-velocity surface, can move across regions through this opening. The inner region  is 
closed except for the  single connection to the TSC region. Thus, the out-of-plane motion of a particle in the 
inner region remains bounded. This particular value of the Jacobi Constant is characteristic of the largest 
member of the northern I+? halo family that appears in Figure 1. The opening of the zero-velocity surface 
narrows as the Jacobi Constant increases towards the value  associated  with the libration point I+?. Consider 
a subset of the halo family for  which the A, amplitude is continuously decreasing. Since, for this subset, the 
Jacobi Constant increases with decreasing A, amplitude, the out-of-plane extent of the bounding inner 
region decreases with decreasing A,. The two  comets in this study also exhibit bounded out-of-plane 
motion  in the inner region. Observations based  on  numerical analysis indicate that, for trajectories that are 
propagated from initial conditions representing manifold surfaces, the out-of-plane excursion is  loosely 
bounded by the A, amplitude of the halo orbit from  which they originate. Thus, by measuring the maximum 
out-of-plane excursion along the actual (ephemeris) path of the comet in the inner region, an initial guess 
for the A, amplitude of a specific halo orbit is generated; this halo orbit is, then, likely to produce a 
manifold trajectory that best matches the comet path. 

STABLE AND UNSTABLE  MANIFOLDS OF A PERIODIC  ORBIT 

Given some initial observations concerning the search for  manifold trajectories, that is, those 
associated with periodic halo orbits, that may best match the comet paths, some additional relationships 
between the stable and unstable manifolds are notable. Consider the general nonlinear vector  field  given as 
k( t )  = f ( t , x ( t ) )  . Suppose this vector  field  is linearized about a periodic solution, E(r)  = Z(t + T )  . The 
linear system  is described by F(t )  = A(r ) j j ( r ) ,  where A ( t )  = A(t +T) '  and y ( t )  is a perturbation from the 
periodic solution. Recall that the discrete time representation of the linear system  can be represented in the 
following form, j ( t k + l )  = @ ( f k + ! , t k )  Y ( t k ) .  This representation also corresponds to the continuous form 
j ( t )  = @ ( t , t o ) j ( r o )  for r(0) = t o  and 6(r,t,,) = A(t)@(t, t , , )  , ~ ( t o , t o )  = I ,  ( I ,  ( i , i )  = I and l,(i, j )  = 0 

for i # j ). These equations are valid  for  all  time, t .  Let At > 0 and consider the following  well-known 
variable transformation: 7 = -t , y ( t )  = G(7) . The matrix G is a constant diagonal matrix with elements 
G(i.i) = (-1)'" . This transformation must satisfy both the continuous and discrete time representations of 
the linear vector field. This requirement leads  to a matrix relationship between the state transition matrix in 
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positive time ( A t  > 0 ), and the state transition matrix in negative time ( Af < 0 3 A 7  > 0):  
@(7,r0)  =C"cD(r,r,)G. This result is crucial in establishing a relationship between the stable and 
unstable manifolds associated with a state on the periodic solution. 

As  previously mentioned, the stability of a periodic orbit can be assessed from the eigenvalues of the 
monodromy matrix, @(T,O) . L e t  A, denote the eigenvalues of cD(T,O), where j = 1, .  . . ,6 . Consider the 
eigenvalue problem Q(T,O)C,, = A,Vu and Q(T,O)V, = A,??? where the subscripts again denotes stable and 
the subscript u denotes unstable. The vectors V,  and Vu represent the corresponding stable and unstable 
eigenvectors associated with As and A,, , respectively. Since the eigenvalues of the monodromy matrix 
appear as reciprocal pairs, let A$' = 1/AU . From the properties of the state transition matrix, the eigenvalue 
problem can be restated as Ax'q = @(-T,O)q or As'q.' = Q(-T,O)y' where the prime notation denotes 
negative time (i.e. numerical propagation with At < 0 ). It  is apparent that < = V,' and, consequently, 
v, = y' . From the time invariance property of the state transition matrix, Q(r,ro) = G"@(t,to)G , it 
follows that V, =GU . This result, combined with the time invariance property of the state transition 
matrix, can be applied to the mapping f w w  ( t i )  = (o<ti,O)v,/IIQ(ti,O)v,II to establish a relationship between 
the unstable manifold  in  positive time ( Fw" ), associated  with the state X ( t i )  on the periodic orbit, and the 
unstable manifold in negative time ( Y ), associated with the state X(- t i )  : Pw" ( t i )  = CY ( - t , )  . A similar 
relationship exists for the stable manifold ( Y  ) associated  with X ( t i )  on the periodic orbit, that is, 
A w, A w,' 
Y ( t i )  = CY ( - t i ) .  Consider the case of a simply symmetric periodic solution, such as  a halo orbit. A 
halo orbit is symmetric about the xz-plane. Thus, if sS(ti) = [ x  y z i y i]' represents a state on the halo 
orbit then I(T-ri)=[x -y z -i y -$ also represents a state on the same orbit. Suppose that numerical 
propagation of the nonlinear and linear systems is performed  with At < 0 and  the eigenvalue problem (in 
negative time) is solved to find the stable and unstable eigenvectors associated with Q(-T,O) . In negative 
time, a  state on the unstable manifold asymptotically departs the periodic solution, locally.  However, in real 
time At > 0 .  Thus, the unstable manifold in negative time is, in reality, the stable manifold in positive  time. 
That is, the unstable manifold associated with X(- t i )  is also the stable manifold associated with f ( T - t i )  . 
This leads to the following relations: Y (T - t i )  =CY ( t i )  and FW* ( T - r i )  = CY ( t i ) .  That is, the stable 
manifold associated with the state Z(T - t i )  is  a mirror image (about thexz-plane) of the unstable manifold 
associated with the state Z(q) on the  same halo orbit. Similarly, the unstable manifold associated with the 
state Z(T-r i )  is a mirror image of the stable manifold  associated  with the state X ( t i ) .  This fact further 
simplifies the process of searching for a  stabldunstable manifold trajectory that matches a segment along 
the path of a comet. Once the evolution of the stable manifold trajectories originating from a particular halo 
family is well understood, then the behavior of the corresponding unstable manifold directly follows. Of 
course, this result is essentially an application of the symmetry due to time invariance (SP2). 

- 

A W"' .. W"' 

A w, 

A w, -w, A w, 

Although SP1 and SP2 simplify the process of identifying a match, an initial guess is still not 
available. The search is generally initiated from  the single observation that the matching manifold 
trajectory is likely to originate fiom a halo orbit whose A, amplitude is close to the maximum out-of-plane 
excursion of the comet in the inner region. Even if the initial search efforts are concentrated only on a 

7 



northern family  (by SPI) and only on the stable manifold associated with this family  (by SP2). there are 
still two separate halo families to search, SJLl and SsL2. Thus, a large solution space still exists. However, 
numerical analysis and extensive experience indicates that this initial choice is not critical. In order to 
establish this fact, i t  is  necessary  to introduce some notation to classify the available solutions. 

NUMERICAL  RESULTS 

Evolution  of  the StableNnstable Manifold in the  Sun-Jupiter  System 

In order to characterize the evolution of a trajectory corresponding to a stable or unstable manifold 
associated with a particular halo family, and provide some structure to the search process, it is necessary to 
establish a set of parameters to identify (a) the desired halo orbit along the family, (b) the point of origin, 
that is, the fixed point, x ,  along the orbit, and  (c) the stabldunstable directions associated with Te. Since, 
as previously discussed, numerical results indicate that the out-of-plane excursion along a given trajectory 
that represents a manifold is loosely  bounded by the A, amplitude of the  originating halo orbit, the A, 
amplitude is used to parameterize the family. Clearly, as seen in Figure 1, some members of the SJLl (or 
SJL2) halo families share the same A, amplitude. However, members of the halo family that constitute the 
subset  most  often producing matches for  comet trajectory arcs all possess A, amplitudes well  below 60x lo6 
km. This fact  is expected since neither OTR or HRC  exceed this value in terms of a maximum out-of-plane 
excursion. Thus, for this investigation, the A, amplitude is  an acceptable parameter. If the halo orbit is 
unstable, both a stable and an unstable manifold is associated with  each state (fixed point) along the orbit. 
Thus, it is also necessary to characterize each state (fixed point) along a particular halo orbit. Figure 3 
includes the yz-projection of an L2 northern halo orbit. Since the comets OTR and HRC  possess a 
significant out-of-plane component, it is reasonable to characterize each point in  the yz-projection of the 
halo orbit by its ( y. z ) coordinate. Note,  however, that this particular parameterization is not as effective 
for smaller members of the halo family, that is, those close to the xy-plane. Nevertheless, the out-of-plane 
component of the position  vector corresponding to either comet in this investigation is significant and, thus, 
the parameterization is still acceptable. To collapse the (y,z) pair into one parameter, let 
a = tan"(o,y/o,z) where o, is defined as +1 for an L, halo and -1 for an halo. The value of the 

. integer o2 equals +1 for a northern halo and -1 for a southern halo. This convention ensures that a is 
always positive in the direction of motion along the orbit. Furthermore, a is constrained to a range 

. between 0" and 360". 

Consider the state characterized by the angle a along a given halo orbit. Assume that the halo orbit is 
unstable such that there exist both stable and unstable directions associated with this state (fixed point) 
along the halo. The eigenvectors of the associated monodromy matrix, O(T,O), are six-dimensional, with 
three position elements ( x ,  y, z ) and three velocity elements ( v,,vv, vz ). Thus, the six-dimensional unit 
stable and unstable eigenvectors, Y (q)=[x%/,, yr,. G/,, irlu yrIu tlUlr, can each be expressed in terms 
of two three-dimensional vectors =[x , / , ,  yslu z,,,] and y,".(- =[is/,, yx,,, i,c/uj? Note that y/* and 
vf" are not themselves unit vectors. Since yt* and vl* are three-dimensional vectors,  each  can be 

- w," 

7 - 

8 



represented in configuration space as an equivalent uni t  direction, relative to the Sun-Jupiter rotating frame, 
associated with the state Y,, = Y(f i )  along the halo orbit. For instance, the uni t  vector along v/" ( f , )  can be 
expressed in terms of azimuth relative to the rotating x-axis ( a n  ) and elevation relative to the xy-plane 
( ). The azimuth is measured in the positive sense when j,y,y > 0 ; the elevation is  measured in the 
positive sense when ir lu > 0 .  The azimuth angle (a,  ) is constrained to be evaluated between f180' and 
the elevation angle ( P ,  ), then, always possesses a value  between *goo. Each state, or fixed point, defined 
within a halo family - including all states along each orbit in that family- corresponds to a unique (ad ,  pd ) 
pair. The directional evolution of the vector vi* along the SJL2 halo family appears in Figure 4. This 
figure includes contours of constant ad and pd along sample members  of the halo family. Contours of 
constant ad and pd appear as nonlinear, smooth, three-dimensional curves along the halo family, while 
lines of constant a are two-dimensional rays originating from (y, z) = (0,O). Numerical analysis indicates 
that the essential features of a collection of trajectories representing stabldunstable manifolds, associated 
with a particular halo family, are better preserved along lines of constant a, (azimuth), compared to lines 
of constant a (angular location along  the halo orbit) or lines of constant p, (elevation). This numerically 
observed trend is illustrated in Figure 5. This fact is most  useful once a candidate match  for a segment or 
arc along a particular comet trajectory is identified. Suppose a candidate match for the path of  HRC in the 
TSC region is identified among the stable manifold trajectories associated with SJL2. HRC experiences 
several close approaches to Jupiter during TSC. if the flyby altitude of these close approaches is too  low, 
one can improve the match - without loosing the essential features - by selecting a neighboring trajectory 
with the same ad . Since the (ad, p d )  pairs are unique along a family, the new trajectory match - one that 
constitutes an improved  match - is associated with a different member  of SJL2. 

Numerical  Near  Symmetry of Solutions Across Halo  Families 

Numerical observations on the evolution',of the stabldunstable manifolds associated with SJL1, 
compared to the unstabldstable manifolds associated with SJL2, reveal some numerical near symmetries 
across halo families. In configuration space, particularly in the TSC region, a trajectory representing a 
stable manifold associated with the particular state f ( f , )  = [ x ,  yI z, . i I  y I  i, ]' along a northern LI 
halo orbit shares many characteristics with the globalized unstable manifold associated with the alternate 
state vector Z ( f , )  = [x2 yz z, x z  y, & I T  along a southern halo, when y, = yz,  z ,  = -z, . Note, 
that these coordinates correspond to the rotating frame typically defined in the CR3BP. These trajectories 
corresponding to the stable and unstable manifolds appear as near mirror images on the xy-plane (i.e. the 
plane of motion of the primaries) and their out-of-plane components are apparently inverted. This 
observation is illustrated in Figure 6.  The converse also appears valid  for a southern LI halo and a northern 
LZ halo, due to the natural xy-plane symmetry in the CR3BP (SPI). This numerically observed fact supports 
the conclusion that the initial choice of an L, or an L2 halo orbit is arbitrary. Once a match, one that exhibits 
the most notable features of the comet trajectory in the TSC region, is identified, then the most appropriate 
halo family, that  is, L, or Lz. for the best  match the comet trajectory can be determined. 
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Critical Energy  Level  for  TSC 

In astronomy, the  more commonly accepted  definition of TSC requires only that  the  Joviocentric 
energy become negative at some instance-during the comet’s orbital evolution. However,  the  Joviocentric 
energy of a comet  can  become negative near  Jupiter  without forcing the comet  to transition between 
regions. Thus,  a more  specific definition of TSC is implemented in this investigation. In any temporary 
satellite capture,  the comet  must first enter  the TSC region  as defined in terms of the zero-velocity surfaces. 
The comet will eventually exit  the TSC region, but its  heliocentric  orbit will be affected by its encounter 
with Jupiter.  The  extent of this  effect depends on the  type of encounter.  There  are two possible types of 
encounters. Suppose the comet’s path originates in the inner region. The  simplest type of TSC (Type I )  
occurs when the comet crosses into  the TSC  region  and immediately exits  to  the outer region. This type 
also  applies  to an immediate crossover from the outer region  to  the inner  region. A type 1 capture is also 
defined as  a flythrough of the TSC  region. If instead, the  comet enters  the  TSC region and experiences 
more than one  close  encounter with Jupiter before it exits the TSC region, the encounter is defined as  type 
2. 

Based  on this definition  for TSC,  a specific energy level  less  than or equal to -2.5 k m 2  /s2 is 
apparently required (in the CR3BP)  for  trajectories  associated with SJLl to experience  a TSC. Along SJLI, 
trajectories generated to approximate  the  stable manifold, and that experience this crossover after one 
revolution  in the  inner region, are identified in  Figure 7 as a function of the critical angular location (a) and 
the A, amplitude of the  halo orbit. The shaded regions in Figure 7 indicate  the  range over a for  which a 
stable manifold trajectory crosses into  the TSC region  from the  inner region. This critical angle a is  crucial 
in identifytng  a match  for OTR in the CR3BP.  Recall  that the search for a match  is essentially  the search 
for a “segment” of a trajectory arc  (corresponding  to  a stablefunstable manifold)  that reflects a segment of 
the comet’s‘,path, particularly  during TSC. The TSC for  OTR  satisfies the  conditions for a type 1 capture, 
while that of  HRC satisfies the  conditions of a type 2. Since neither  OTR or HRC  ever  evolve into  a 
periodic halo orbit, it is necessary to consider heteroclinic connections between the  stable and unstable 
manifolds in the  TSC  region, or the long-term evolution of the  stable or unstable manifold  trajectories, 
beyond the TSC  stage.  Thus,  classification of the  capture type before searching for a match, is significant 
because the type  of capture affects the  structure of the search. That is, there  are two directions in which a 
stabldunstable manifold can be propagated. One direction leads the trajectory into  the TSC  region, the 
other  results in a trajectory  that passes further away  from the TSC region. If a comet experiences a type I 
capture, it is  best  to propagate the manifolds, i.e., numerically integrate  the trajectories, away  from  the  TSC 
region. If instead,  the comet experiences  a type 2 capture,  a good approximation for a match  can be 
obtained by propagating  the trajectories  towards  the  TSC  region and searching for  heteroclinic connections 
between the  stable and unstable manifold~.’’~~~ The difference  is in  the integration time. As illustrated in 
Figure 7, if the trajectories  representing  the  stabldunstable manifolds and associated with SJLl are 
propagated &wards the  inner  region, only a handful will return through the TSC region  after 1 revolution. 
Certainly,  the window of opportunity is  wider as more revolutions are included. However,  each  revolution 
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in the inner region adds to the integration time and degrades the  accuracy of the solution. Furthermore, the 
analysis that led to Figure 7 can be accomplished using the SJL2 family instead, by propagating the 
stabldunstable manifolds towards the outer region. However, since the outer region  is open, and beyond 
the heliocentric orbit of Jupiter, the return time to  the opening of the zero-velocity surface is much longer 
than the return time for SJLl trajectories, which further increases the numerical integration error. 

Identification of a  Match for Oterma 

In the past, OTR was captured by Jupiter on two separate occasions; once from 1935 to 1939, and later 
on from 1962 to 1964. Both encounters with Jupiter resulted in a type 1 TSC. The search for a match 
begins by measuring the maximum out-of-plane excursion of the comet  path while it orbits the Sun in the 
inner region. Based  on this maximum out-of-plane excursion, an initial guess for the A, amplitude of the 
halo orbit can be obtained. From the illustration in Figure 7, states along this  halo orbit can be determined 
that will result in a stable manifold trajectory that returns through the opening of the zero-velocity surface 
after 1 revolution in the inner region. If a candidate match  is identified, but the direction is inverted, or the 
trajectory itself appears inverted, the symmetry properties (SP1  and SP2) can be applied to improve the 
match  for a given A, amplitude. If,  for the initial A, amplitude, a candidate match exists but is not 
sufficiently close to the path of the comet, the features of the trajectory can be adjusted by examining 
nearby trajectories along lines of constant a d .  Thus, the essential characteristics of the trajectory will be 
preserved by changing the A, amplitude of the halo orbit while maintaining the azimuth of the stable (or 
unstable) in a constant direction. The best  match obtained in the CR3BP can be further improved by 
transferring the solution into the ephemeris model.  In the ephemeris model, periodic halo orbits do not 
exist. Thus, transferring the orbit into this model requires its transformation into a quasi-periodic Lissajous 
trajectory. The transfer is accomplished by selecting several target points along  the original halo orbit as an 
initial guess for the quasi-periodic solution in the ephemeris model  and applying a differential corrections 
p r o c e ~ s ~ ” ~ ~  for multiple revolutions to obtain a Lissajous trajectory that  is similar  to the original halo orbit. 
Once the orbit is transferred into the ephemeris model, it is necessary  to re-establish the comet match. The 
calculation of the stable and unstable manifolds associated with quasi-periodic orbits is  based  on the power 
method discussed by G.  G6mez. A. Jorba, J. Masdemont, and C. Sim6.28 Though the matching trajectory 
(or trajectory arc) in the ephemeris model wil l  not originate from the same angular location (a). it will be in 
the neighborhood of the original value. The match for  OTR as it is developed and computed in the 
ephemeris model  is  plotted in Figure 8. The red curve in this figure represents the stable manifold 
associated with a northern SJLl halo. The black curve represents a segment along the comet’s orbital path 
available directly from comet ephemeris data. 

Identification of a Match for Helin-Roman-Crockett 

HRC experienced a type  2 capture by Jupiter from  1966 until 1985. Since HRC remained in the vicinity 
of Jupiter for  an extended period  of time, the search for a match  is simplified by considering possible 
heteroclinic connections between the stable and unstable manifolds associated with SJLl and SJL2. The 
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search process  is the same as that used  for  OTR.  except that. i n  this case, the near symmetry across halo 
families offers an advantage locating a match. In this case, the match  for  HRC  is a combination of the 
stable and unstable manifolds associated with a southern SKI halo. Both the trajectories, that is, one each 
corresponding to the stable and the unstable manifolds respectively, originate from the same halo orbit and, 
hence, share the same Jacobi Constant. Once again, to improve the accuracy of the match, the trajectories 
are transferred from the CR3BP into the ephemeris model. The ephemeris model  match  is  plotted in Figure 
9. The red curve represents a segment along the stable manifold for a southern SJLl Lissajous trajectory. 
The unstable manifold appears as a blue curve for the same SKI Lissajous trajectory. The orbital path of 
the HRC  comet  is directly plotted from ephemeris data as a black  curve. 

CONCLUSION 

The natural symmetries in the CR3BP and the observed near-symmetries between the LI and LQ halo 
families - based  on numerical analysis - provide the basic understanding necessary to begin the search 
process and ultimately identify a match in the CR3BP, for a particular Jupiter family short-period comet. 
The application of DST has provided significant insight into the geometry of solutions in the Sun-Jupiter 
system and offered a simple model to account for the most notable features of the TSC phenomena 
observed in Jupiter family short-period comets. Furthermore, the applications of this study extend beyond 
solar system dynamics or the modeling of TSC trajectories. The fact that the motion of these natural bodies 
can be explained in the context of DST also suggests applications to interplanetary mission design (IMD). 

The next step in this investigation is to apply the DST modeling approach to the capture of other short- 

period Jupiter family comets, such as Gehrels 3. Although the modeling approach discussed here has been 
successfully applied to the capture motion of  HRC and OTR a slightly different approach might be 
necessary in modeling other Jupiter family comets. Since the three-dimensional chaotic nature of TSC 
results in distinct types of motion during capture, modeling some of these other comets might require i, 
consideration of the stable and unstable manifold solutions associated with other types  of periodic and 
orbits in the Sun-Jupiter system, aside from the SKl and SJL2 halo families. Furthermore, comets such as 
Gehrels 3, that experience low altitude approaches to Jupiter might also require a more complex model that 
includes the lunar perturbations of Io, Europa, Ganymede and Callisto. 1 
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Stable Manifold  Along a d  = 43" Stable Manifold Along a = 305" 

Figure 5 - Stable Manifold  Behavior  Along  a  Line  of 
Constant c41 vs. a Line  of  constant a 
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Trajectories  After 1 Revolution  in  the  Inner  Region 

-4 -2 t 
-.. 
-6 -8 -4 -2 0 2 4 0 8 

x [kml x 10' 

-4 t 1 

x P I  x 10' 

Figure 8 - Ephemeris Model  Match  for  Oterma (1935-1939) 
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Figure  9  Ephemeris  Model  Match for Helin-Roman-Crockett  (1966-1985) 
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